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Abstract

The effect of anisotropy on transport phenomena in anisotropic porous media is studied in this paper. For convenience,
a bank of circular cylinders which can be treated as an anisotropic porous medium is employed such that both Darcy-
Forchheimer drag and effective thermal conductivity can be accurately determined. Two problems including a forced
flow and a natural convection are illustrated to investigate the effect of anisotropy on fluid flow and heat transfer
through a bank of circular cylinders. The solutions reveal that inclination of the cylinder bundle could give rise to an
influence of more than 100% on the heat transfer rate for both forced convection and natural convection. Hence, the
anisotropy of an anisotropic porous medium should not be ignored. © 1999 Elsevier Science Ltd. All rights reserved.

Nomenclature

¢, specific heat [Jkg™' K]

d granule size of the porous medium [m]

F Forchheimer coefficient, equation (8a)

g gravity [9.806 m s~

Gr. characteristic Grashof number, fgATL/V?
H width of a channel or a square enclosure [m]
K permeability of a porous medium [m?]

k thermal conductivity [W m~' K ']

L characteristic length [m]

| row spacing of the cylinder bank [m]

ri1 - mass flow rate [kg s~ ']

P pressure on the superficial flow [N m~?]

p dimensionless pressure, P/(p,V'?)

Pe, characteristic Peclet number, V_L/o;

Pr Prandtl number, v/o

O heat transfer from the heating plate [W m ']
¢ dimensionless heat transfer rate, equations (24) and (30)
R.. R,., R,, R, dimensionless tensor of Darcy—
Forchheimer drag

Ra Rayleigh number, BgATH? o v

Re Reynolds number, U, H/v

Re, characteristic Reynolds number, V.L/v
(Rey),, granule Reynolds number, |U,,|d/v

* Corresponding author.

T temperature [K]

T,, T,, some constant temperatures [K]

(U, V) superficial velocity [m s™!]

(@, ©) dimensionless superficial velocity

U,, mean velocity, rir/(p:H)

V. characteristic velocity [m s ']

W heating length in the forced convection case [m]
(X, Y) coordinate system [m]

(x, y) dimensionless coordinates, (X/L, Y/L).

Greek symbols

o thermal diffusivity [m?*s ']

B volumetric thermal expansion [K ~']

AT characteristic temperature [K]

& porosity

0 dimensionless temperature, (T—T7.,)/AT
x dimensionless thermal conductivity, k/k;
Kye Ky Ky K, tensor of effective thermal conductivity
u  dynamic viscosity [N s m 2]

v kinematic viscosity [m*s~'], u/p

p density [kg m~

¢ thermal conductivity ratio, k/k;

¢ inclination angle of the cylinders [deg]

Y stream function, equation (29).

Subscripts
11, 22,33 tensor indexes in principal coordinates
¢ characteristic
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f fluid

max maximum
min minimum
ref reference

s solid.

1. Introduction

Fluid flow and heat transfer through anisotropic
porous media find many applications in industry and
in nature. However, the permeability of porous media
depends very strongly on its microstructure [1]. This leads
to a great difficulty in the determination of the Darcy—
Forchheimer drag for random heterogeneous porous
media, especially when they are macroscopically aniso-
tropic. Thus, the literature dealing with the anisotropic
effect in anisotropic porous media are very limited.

In his study, Poirier [2] modelled a bank of circular
cylinders as an anisotropic porous medium. A correlation
from the available experimental data was obtained for
the principal permeabilities (K, and K,,) that were par-
allel and normal to the cylinders. However, Poirier’s cor-
relation was restricted to a porosity of the range
0.19 < ¢ < 0.66, while the error of the correlation could
be as large as 43%. Based on a simplified form of Poirier’s
correlation, Sinha et al. [3] found that the anisotropic
effect of the dendrites was significant in alloy sol-
idification if the extent of the mushy zone was large or if
the Rayleigh number was high. To investigate the aniso-
tropic effect, Yoo and Viskanta [4] assumed the principal
permeability K;; was of the Blake-Kozeny type.
However, a value was assigned to the permeability ratio
(K,,/K,,) due to the lack of appropriate information. The
influence of the anisotropy on the transport phenomena
thus was not properly observed.

Many attempts were also undertaken to improve the
upper and lower bounds for the permeability of some
particular porous media [1]. Logically, porous media of
the same porosity could have entirely different
permeability. For instance, for a flow across a bank of
circular cylinders that can be treated as a porous medium,
it is possible to achieve a zero permeability in one direc-
tion (say X) at a given porosity ¢ by letting the clearance
of the cylinders be zero in the other direction (say Y).
Narrow bound widths thus are not expected for most
microstructures discussed in the review [1]. As a result,
the estimated bounds could be too divergent to have
utility in practical applications.

It should be pointed out here that many porous media
possess a definite and regular microstructure especially
for that from industry. Fluid flow and heat transfer
through a cylinder (tube) bundle is one of the examples.
The purpose of the present study is to investigate the
effect of the anisotropy on fluid flow and heat transfer
through an anisotropic porous medium. For simplicity,

a bank of circular cylinders is employed such that both
principal permeability and effective thermal conductivity
can be accurately determined. Two examples including a
forced flow and a natural convection will be conducted to
study the anisotropic effect on the transport phenomena.

2. Theoretical analysis

Consider a fluid flow and heat transfer through an
anisotropic porous medium of homogeneous porosity &.
All of the thermophysical properties are constant. The
flow is assumed steady, laminar, incompressible and
macroscopically two-dimensional. The solid phase has
reached thermal equilibrium with the fluid phase. The
coordinates are properly arranged such that the gravity
is in the —y direction. After introducing the Boussinesq
approximation and the dimensionless transformation

a=0V, 6=VIV, x=X/L, y=Y/L,

p=Pl(pV?), x=kik, o=(klpcys
0=(T—T,)/AT, Re.= V.Lv,

Gr. = BgATL|V?, Pe. =V Lo (1)
the governing equations become [3—8]

oil 55_

ax+5—0 2)
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o=t )= —e—+ — | — +
e\ Ox 0y Ox = Rec\px?  9y?
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where V., L and AT are respectively the characteristic
velocity, the characteristic length and the characteristic
temperature, while 7, denotes a temperature level. The
notation (U, V) denotes the superficial velocity. The gran-
ule size of the porous medium d/L, the characteristic
Reynolds number Re,, the characteristic Grashof number
Gr. and the characteristic Peclet number Pe, are to be
defined for each individual problem. The dimensionless

—&

L 2
<E> (R i+ R, 0)+eGr.(0—0y) (4)
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tensor of the Darcy-Forchheimer drag R,,, R,,, R,., R,
will be discussed later.

It should be noted that the inertia term in equations
(3) and (4) and the heat convection term in equation (5)
are based on the superficial velocity of the fluid because
the solid is stationary. The second term on the right hand
side of the momentum equations represents the viscous
force arising from the fluid-to-fluid interaction [7, §]. It
would vanish in a region where the superficial velocity is
uniform. However, this particular term could be always
considerable in the wall regions where the superficial
velocity possesses a sharp variation due to the no-slip
condition. In addition, they should govern the drag force
alone when the system of governing equations (2)—(5) is
directly applied on the pure fluid region by assigning
¢ = 1. Under such a situation, the Darcy—Forchheimer
drag disappears and the system of governing equations
becomes that for a single phase problem [7, 8]. Hence,
the fluid-to-fluid viscosity term should be simply pro-
portional to the viscosity of the fluid u as found by Gane-
san and Poirier [6] after a rigorous derivation. The widely
adopted assumption [5, 9] that the fluid-to-fluid inter-
action term could have an ‘effective’ viscosity different
from the molecular viscosity u is not evident.

In the present study, the bank of circular cylinders is
modeled as an orthotropic medium. Thus, the tensor of
the Darcy-Forchheimer drag R, ,, R,,, R,,, R,, appearing
in the system of equations (2)—(5) can be evaluated from
[10-12]

33

1 1
R, = E(Rl 1+ Ry0)+ E(Rll —R;,) cos(2¢)
1 .
R.\')' = R\'x = E(Rll - R22) Sln(z(/))

R, = 3(Ri, 4 Rex) — 3(Ry, R cos(29) ©

where R,; and R,, denote the Darcy—Forchheimer drag
in the principal axes of the anisotropic porous medium
respectively parallel and normal to the cylinders. In this
connection, ¢ is the angle between the principal axis 11
and the physical ordinate x.

Recently, Lee and Yang [13] solved the fluid flow
across a bank of circular cylinders in pore scale. The
velocity then was integrated to yield a modelling for the
Darcy-Forchheimer drag in the form

d2
Ry, = <f +FRed>22 (7a)

(Rey)r = |Uzz|d/" (7b)

The Forchheimer drag (F Rey),, was found to arise from
the form drag on the surfaces of the cylinders. In the
present study, this same technique is employed to evalu-
ate the Darcy—Forchheimer drag for fluid flow parallel
to a bank of circular cylinders as illustrated in Fig. 1.
Due to the particular geometry, only the flow inside a
unit cell (with area /x/) is solved on a Cartesian grid
system as shown in fig. 2 of ref . [13]. Diameter of the

Fig. 1. A schematic sketch for a fluid flow through a bank of circular cylinders.
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cylinders d is assigned as the granule size of the porous
medium. The resulting Darcy—Forchheimer drag R, is
found independent of the granular Reynolds number
(Reg);; due to the absence of the form drag. The cor-
relation

dz
Ry, = (? +FRed>H (sa)
Fi, =0 (8b)
d2 17 W\ 1.3
— = —(8.94—117.13+91.2632)¢ (9a)
Ky, &

T 2
e=1—§® (9b)

fits the computed R;, within a maximum error of less than
5% for all of the possible porosities (0.2146 <& < 1).

Similarly, tensor of the effective thermal conductivity
needed in equation (5) is expressible as

1 1
Ky = E(Kll +K35) + E(Kll — K1) €0S(2¢0)
1 .
Ky =Ky = E(Kll _K22) Sln(2¢)

1 1
K, = E(Kn +15,) — E(Kll —K»,) COS(2¢) (10)

For a particular porous matrix such as the bank of cir-
cular cylinders under study, the principal thermal con-
ductivities x,, and k,, can be effectively determined by a
numerical procedure proposed in ref. [14]. For instance,
to determine the effective thermal conductivity across the
cylinders (k»,), one solves a heat conduction problem in
pore scale with a given temperature difference in the
principal direction 22. The pore scale temperature as well
as the pore scale heat flux then is integrated over cross-
sections normal to the principal axis 22. Finally, deter-
mine the effective thermal conductivity k,, from the ratio
of the averaged heat flux and the gradient of the average
temperature. The other principal thermal conductivity
can be found similarly. For convenience, the numerical
results of x,, and k,, are correlated by

K =e+(1—¢)o
=o+(1—o)e (11)

Ky = Kref.f(s’ O-)

e o]

fle,0) = 1+a(l—¢)tan~ ' (Ino) +b(1 —¢)> tan~ ' (In o)
(12)
o = ky/k

?:Js(l—g)/n

a=—0.01373+0.1552tan" ' (Ino—3.2)
b= —0.5536—0.3913tan"' (In o —2.5) (13)

The correlations (11) and (12) are found to make a good
approximation to the computed x,, and x,, with a
maximum error of less than 5% for 0.2146 < ¢ < 1 and
o = 1. In the present study, the granule Peclet number
(Pr Rey) is not large such that effect of thermal dispersion
is neglected [11].

Itis interesting to note that for isotropic porous media,
the Forchheimer coefficients Fy,, F,,, and F;; are deter-
mined by the same function of ¢ and Re,. In their study,
Lee and Yang [13] found that the Forchheimer drag (F
Rey) in a direction depended on the velocity component
in the same direction. This implies that the granule Rey-
nolds numbers for a three-dimensional superficial vel-
ocity (U,;, U,,, Us;) should be evaluated from

(Reg) 1y =10, |dfv (14a)
(Reg)ss = |Uzz|d/v (14b)
(Rey)ss = |Uss|d/" (14¢)

As a result, the Darcy—Forchheimer drag (R,;, Ry, Rs3)
could be anisotropic even when the matrix of the porous
medium is geometrically isotropic. Such a finding is con-
sistent with Kaviany’s suggestion [12]. In many previous
investigations (e.g. [5]) the granule Reynolds number for
the Forchheimer drag was defined on the basis of |V,
ie.,
(Reg) 1y = (Reg)rr =(Req)ss

= (U1, + U5, + U35)'2d)y (15)
The assumption of ‘isotropic granule Reynolds numbers’
obviously ignores the influence of the different velocity

components when U, # U,, # Us;, and thus is ques-
tionable in nature.

3. Forced flow through an anisotropic porous medium

Consider an incompressible laminar flow through a
channel formed with two parallel flat plates of infinite
length. The channel is blocked by a bank of circular
cylinders of diameter d. The cylinders are staggered and
possess the directional angle (¢, 90° — ¢, 90°) as shown
in Fig. 2. Such a directional angle will be referred to as
‘an inclination angle ¢” in the present study for simplicity.
Let fluid enter the channel with a uniform temperature
T, at X = — oo, while both plates are perfectly insulated
except for T(X, 0)=T7, on the heating surface
0 < X< W and Y = 0. Natural convection is assumed
negligible. The row spacing of the cylinders (/) is very
small as compared to the width of the channel (H) such
that the cylinders can be modelled as an anisotropic
porous medium. All of the thermophysical properties are
constant. Physically, the fluid flow in the present forced
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Fig. 2. Top view and front view of the flow configuration in the forced convection example.

convection problem would be momentum fully developed
throughout the channel (i.e. dii/0x = 0 and thus ¢ =0
and 0p/0x is constant). Based on these and the following
definitions

V.=U,, L=H, U,=m/(p;H), AT=T,—T,,
Re. = U H/v = Re, Gr.=0, Pr=vlo,
Pe. = Pr Re (16)

the set of governing equations (3)—(5) reduces to

op H\? 10%a

0=ReL (2 R a—- " (17
ox \d € 9y’
o (HY

0= Rea*y + <E> R, it (18)

+

0 a0 0 a0
— e |+ — [k, — 19
ay <k‘” 6x>+ (’)y <K'U 6_}’) ( )
where the Darcy-Forchheimer drag R,, and R, and the
thermal conductivities x,,, k,,, k,, and x,, should be
evaluated from equations (6)—(13) based on the granule
Reynolds number

d
(Req)>> = |sin a|Re <*> (20)
H
while the associated boundary conditions are
a(x,0) = a(x,1) =0 21)
and

0(—c0,y) =0, 00(c0,y)/0x =0, 00(x,1)/dy =0,
00(x,0)/0y =0 forx<0 and x>1,
0(x,00 =1 for0<x<1. (22)
Next, estimate a value for the pressure gradient
(0p/0x = constant) and solve the ordinary differential

equation (17) along with the boundary conditions (21)
such that the conservation law

Jl ady = 1 (23)

is satisfied. Once the superficial velocity i is known, the
pressure distribution g(x, y) is determined from equation
(18), and the temperature 6(x, y) is solved from the energy
equations (19) and (22) by using the weighting function
scheme [15, 16]. Finally, the dimensionless heat transfer
rate is evaluated from

0 [1a0(x,0)
T= AT "™ | "oy

dx (24a)

or
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1
q=Pr ReJ i(y)0(o0,y)dy (24b)
0

In the present example, numerical computations were
performed for various inclination angle ¢ and Reynolds
numbers Re under the parameters (Pr, o, & H/d,
W/H) = (7, 10, 0.6, 20, 1). The discrepancy between the
heat transfer rates computed from equation (24a) and
(24b) was found less than 0.01%. Numerical results of
isobars, superficial velocity @ and isotherms are depicted
in Fig. 3 for Re = 1 and ¢ = 0, 45, 90 and 135° with the
increments Ap = 5000 and A0 = 0.1. For convenience,
the detailed velocity profile @(y) in the wall region
(¥ <0.05) is provided in Fig. 4 for ¢ = 0, 30, 60 and 90°.

From the isobars of Fig. 3, one sees that the pressure
gradient has a minimum value at ¢ = 0° and possesses a
maximum at ¢ = 90°. Due to a stronger Darcy—Forch-
heimer drag, the velocity profile at ¢ = 90° is slightly
flatter than that of ¢ = 0° as observable from Fig. 4. It
is interesting to note from Fig. 3 that for 0 < ¢ < 90°
(say ¢ = 45°) the pressure has a negative gradient to the
lower-right so as to overcome a greater Darcy—Forch-
heimer drag across the cylinders (R,,) while a fully
developed flow (¢ = 0) is maintained. Similar phenom-
enon occurs for 90 < ¢ < 180° because of geometrical
symmetry.

L0 o o I
0.04 |-
0.03 |-
yo‘oz:

0.01

0.00 PN I T T T T I O I Y
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 4. Velocity profiles in the wall region of the forced flow at
Re =1and ¢ = 0, 30, 60 and 90°.

In the present computation, the thermal conductivity
ratio o = k,/k; is as large as 10. The anisotropic thermal
conductivity thus could have a great influence on the heat

0.1 // 9.6 -
Y
1.0

i

(]
[=-]

(b)@ =45°

0.1 _
A\
1.0

0.1 0.8

(c)¢ =90°

1.0

A

d)® =135

Fig. 3. Isobars (Ap = 5000), superficial velocity () and isotherms (A0 = 0.1) for the forced convection at Re = 1 and ¢ = 0, 45, 90

and 135°.
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Fig. 5. Heat transfer rate ¢ as a function of ¢ for the forced
convection at various Reynolds numbers.

transfer rate ¢. As observable from Fig. 3(b) and (d), the
upstream heat conduction in the case of ¢p = 135° is more
pronounced than that in the case of ¢ = 45°, while both
cases have the same velocity i(y). As a result, the case of
¢ = 135° has a lower mean temperature in the down-
stream region and thus possesses a smaller heat transfer
rate ¢ (see equation (24b)).

Figure 5 shows the heat transfer rate ¢ as a function of
inclination angle ¢ at various Reynolds numbers under
the parameters (Pr, o, ¢, H/d, W/H) = (7, 10, 0.6, 20, 1).
The maximum heat transfer rate at each Reynolds num-
ber is denoted by the dashed curve. As mentioned in the
preceding paragraph, an inclination angle ¢ of less than
90° has a smaller upstream heat conduction and thus a
larger heat transfer rate ¢ as compared to the inclination
angle (180°—¢). This might account for the fact that the
maximum heat transfer rate occurs at a certain incli-
nation angle below 90°. As expected, the function ¢(¢;
Re) becomes symmetrical with respect to ¢ = 90° when
the Reynolds number is sufficiently large such that the
forced convection dominates the heat transfer. Never-
theless, the value (¢ma/¢min— 1) increases as the Reynolds
number increases. It could be even larger than one hun-
dred percent as can be seen from Fig. 5. Therefore, the
anisotropy of an anisotropic porous medium could be
always very important.

4. Natural convection through an anisotropic porous
medium

Consider an anisotropic porous medium inside a
square enclosure fully filled with a fluid. Both horizontal

walls of the enclosure are insulated while the two vertical
walls at X = 0 and X = H are maintained respectively at
the uniform temperatures 7, and 7.,. The anisotropic
porous medium is formed by the same bank of circular
cylinders as in the previous example (Fig. 2). After intro-
ducing the definitions

L=H V.=ou/H AT=T,—T,, Pr=vo

Ra = BgATH? |(ov) (25)
the governing equations are expressible as equations (2)—
(5) with the parameters
1/Re. = Pr, Gr.= PrRa, Pe, =1 (26)
The associated boundary conditions are

u(0,y) = u(l,y) = u(x,0) = u(x,1) =0

v(0,y) =v(l,y) =v(x,0) =v(x,1) =0

000,y) =1 06(1,y) =0, 00(x,0)/dy =0
00(x,1)/0y = 27
The granule Reynolds number (Rey),, dealing with the

principal Darcy—Forchheimer drag R,, should be evalu-
ated from

_ 1 d
= — |sind ii— 5| — — 2
(Req)»» = |Us,|d)v = | sing it — cosd 7| P (28)

The principal Darcy drag R;, and the principal effective
thermal conductivities k,, and k,, are the same as that of
the forced flow illustrated in the previous section.

Numerical results including the superficial velocity, the
pressure and the temperature were obtained for the par-
ameters (Ra, Pr,o,¢, H/d) =(107,7,10,0.6,40) at various
inclination angles ¢. Upon knowing the superficial vel-
ocity and the temperature, the stream function was com-
puted from

Y= J ady (29a)
0
and
Y= — J 5dx (29b)
0
while the heat transfer rate was evaluated from
o 100(0, y)
q - kaT - XX ax d.} (30)

All of the computations were performed on a Cartesian
grid system with Ax = Ay = 0.02 by using the weighting
function scheme [15, 16] and the NAPPLE algorithm
[17]. A further reduction on the grid size did not show
significant influence on the numerical solution. In
addition, the resulting stream function based on equation
(29a) was found to agree with that from equation (29b)
at a maximum discrepancy of less than 0.01%. This is a
proof on the correctness of the present computations.
Numerical results of isotherms and streamlines are pre-
sented in Fig. 6 for the four representative inclination
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i

e

(a) ¢=0 (b) ¢=45

Fig. 6. Isotherms and streamlines (A6 = 0.1 and Ay =

angles ¢ = 0, 45, 90 and 135°. For each of the four cases,
the isotherms vary from 0 = 1 on the left wall (x = 0) to
0 =0 on the right wall (x = 1) with an increment of
A0 = 0.1. Similarly, the streamlines decrease from iy = 0
on the sold walls toward the center of the square enclos-
ure with an increment of Ay = 0.5. This implies the exis-
tence of a minimum stream function y = V,;, < 0. Note
that negative stream function means a clockwise vortex.
Thus, the value of —,,;, makes a good measure for the
strength of a natural convection. For convenience, the
value of —;, along with the heat transfer rate (g) is
shown in Fig. 7 as functions of ¢. The heat transfer rate
under pure heat conduction situation (Ra = 0) also is
provided in Fig. 7 as a reference.

It is well-known that in a conventional natural con-
vection inside a square enclosure (without an anisotropic
porous medium) the streamlines are slightly elliptic with
the long axis lying in the direction of 45° due to the
growth of the boundary layers along both vertical walls.
The strongest circulating flow in the present problem thus
occurs at this particular inclination angle of ¢ = 45° due
to the smallest Darcy—Forchheimer drag, see Figs 6(b)
and 7. Note also that large Darcy—Forchheimer drag near
the horizontal walls (y = 0 and y = 1) could significantly
retard the flow because there is no driven force. In the
range of inclination angles 90 < ¢ < 180°, the Darcy—
Forchheimer drag on both horizontal walls thickens the
boundary layer and thus weakens the circulation flow as
observable from Figs 6(c), 6(d) and 7.

Again, the thermal conductivity ratio ¢ in this example
is as large as 10. Under such a situation, the horizontal
cylinders in the case of ¢ = 0° (also 180°) make good
‘bridges’ for the heat flow from the hot wall to the cold
wall. In contrast, the heat flow in the case of ¢ = 90°
should go across the fluid region that possesses a low

j=]=

(c) ¢=90 (d) ¢=135

0.5) for the natural convection with ¢ = 0, 45, 90 and 135°.

10]||ll|ll|ll|l||ll

Fig. 7. Strength (—/,,;,) and heat transfer rate (¢) of the natural
convection at various inclination angles.

conductivity. Hence, the best and the worst heat transfer
rates occur respectively at an inclination angle near
¢ = 165° and ¢ = 80° (see Fig. 7). It is interesting to
note from Fig. 6 that due to its elliptic streamlines the
inclination angle of ¢ = 45° has a smaller temperature
gradient (—06/0x) on the vertical walls than does the
inclination angle ¢ = 135°. As a result, the heat transfer
rate at ¢ = 45° is smaller than that at ¢ = 135° (see Fig.
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7), although both cases have the same effective thermal
conductivity k.. As a final note, it is mentioned that the
heat transfer rate as shown in Fig. 7 can be found to
have a variation (¢may/¢min— 1) of more than 100%. This
implies that the anisotropy of an anisotropic porous
media should not be ignored.

5. Conclusion

A bank of circular cylinders is treated as an anisotropic
porous medium to investigate the effect of anisotropy on
fluid flow and heat transfer in anisotropic porous media.
The Darcy-Forchheimer drag and the effective thermal
conductivity in the principal axes are determined numeri-
cally by using the weighting function scheme along with
the NAPPLE algorithm. Modelling of the Darcy drag
and the effective thermal conductivity then is derived
from the numerical results. Based on the modelling, fluid
flow and heat transfer for a forced flow as well as a
natural convection through a bank of circular cylinders
are solved.

The solutions show that in the forced flow case an
inclination of acute angle ¢ has a smaller upstream heat
conduction and thus a larger heat transfer rate ¢ as com-
pared to the inclination angle (180°—¢). As expected,
the function ¢(¢) becomes symmetrical with respect to
¢ =90° when the Reynolds number is sufficiently large
such that the forced convection dominates the heat trans-
fer. Nevertheless, an increase in the Reynolds number
enhances the variation on the function ¢(¢).

In the natural convection case, the strongest circulating
flow occurs at the particular inclination angle of ¢ = 45°
due to the smallest Darcy—Forchheimer drag. The hori-
zontal cylinders in the case of ¢ = 0° (also 180°) make
good ‘bridge’ for the heat flow from the hot wall to the
cold wall, and thus have a good heat transfer rate. The
solutions reveal also that due to a strong circulation flow
the inclination angle of ¢ = 45° gives rise to a small
temperature gradient (—060/dx) on the vertical walls and
thus poses a small heat transfer rate. The inclination
angle is found to have an influence of more than one
hundred percent on the heat transfer rate. Hence, the
anisotropy of an anisotropic porous medium could be
always very important for either forced flow or natural
convection.
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